52 research outputs found

    Turbulence modeling

    Get PDF
    The performance of existing two-equation eddy viscosity models was examined. An effort was made to develop better models for near-wall turbulence using direct numerical simulations of plane channel and boundary layer flows. The asymptotic near-wall behavior of turbulence was used to examine the problems of current second order closure models and develop new models with the correct near-wall behavior. Rapid Distortion Theory was used to analytically study the effects of mean deformation on turbulence, obtain analytical solutions for the spectrum tensor, Reynolds stress tensor, anisotropy tensor and its invariants, which can be used in the turbulence model development. The potential of the renormalization group theory in turbulence modeling was studied, as well as compressible turbulent flows, and modeling of bypass transition

    Turbulence modeling

    Get PDF
    In recent years codes that use the Navier-Stokes equations to compute aerodynamic flows have evolved from computing two-dimensional flows around simple airfoils to computing flows around full scale aircraft configurations. Most flows of engineering interest are turbulent and turbulence models are needed for their prediction. Yet, it is known that present turbulence models are adequate only for simple flows and do poorly in complicated flows such as three-dimensional separation, or large-scale unsteadiness. The same progress that allowed the development of these aerodynamic codes, namely the introduction of supercomputers, has allowed us to compute directly turbulent flows, albeit only for simple flows at moderate Reynolds numbers. These direct turbulence simulations provide us with detailed data that experimentalists were not able to measure. This work is motivated by the fact that data exists for developing better turbulence models and by the need for better models to compute flows of engineering interest. The objective is to develop turbulence models for engineering applications. The model categories that show promise for immediate use are on the two-equation level and the Reynolds-stress level

    Modeling of turbulence and transition

    Get PDF
    The first objective is to evaluate current two-equation and second order closure turbulence models using available direct numerical simulations and experiments, and to identify the models which represent the state of the art in turbulence modeling. The second objective is to study the near-wall behavior of turbulence, and to develop reliable models for an engineering calculation of turbulence and transition. The third objective is to develop a two-scale model for compressible turbulence

    Critical assessment of Reynolds stress turbulence models using homogeneous flows

    Get PDF
    In modeling the rapid part of the pressure correlation term in the Reynolds stress transport equations, extensive use has been made of its exact properties which were first suggested by Rotta. These, for example, have been employed in obtaining the widely used Launder, Reece and Rodi (LRR) model. Some recent proposals have dropped one of these properties to obtain new models. We demonstrate, by computing some simple homogeneous flows, that doing so does not lead to any significant improvements over the LRR model and it is not the right direction in improving the performance of existing models. The reason for this, in our opinion, is that violation of one of the exact properties can not bring in any new physics into the model. We compute thirteen homogeneous flows using LRR (with a recalibrated rapid term constant), IP and SSG models. The flows computed include the flow through axisymmetric contraction; axisymmetric expansion; distortion by plane strain; and homogeneous shear flows with and without rotation. Results show that for most general representation for a model linear in the anisotropic tensor, performs either better or as good as the other two models of the same level

    Research activities at the Center for Modeling of Turbulence and Transition

    Get PDF
    The main research activities at the Center for Modeling of Turbulence and Transition (CMOTT) are described. The research objective of CMOTT is to improve and/or develop turbulence and transition models for propulsion systems. The flows of interest in propulsion systems can be both compressible and incompressible, three dimensional, bounded by complex wall geometries, chemically reacting, and involve 'bypass' transition. The most relevant turbulence and transition models for the above flows are one- and two-equation eddy viscosity models, Reynolds stress algebraic- and transport-equation models, pdf models, and multiple-scale models. All these models are classified as one-point closure schemes since only one-point (in time and space) turbulent correlations, such as second moments (Reynolds stresses and turbulent heat fluxes) and third moments, are involved. In computational fluid dynamics, all turbulent quantities are one-point correlations. Therefore, the study of one-point turbulent closure schemes is the focus of our turbulence research. However, other research, such as the renormalization group theory, the direct interaction approximation method, and numerical simulations are also pursued to support the development of turbulence modeling

    Turbulence program for propulsion systems

    Get PDF
    Program goals at the Center for Modeling of Turbulence and Transition (CMOTT), NASA Lewis Research Center, are (1) to develop reliable turbulence (including bypass transition) and combustion models for complex flows in propulsion systems and (2) to integrate developed models into deliverable CFD tools for propulsion systems in collaboration with industry. This viewgraph presentation covers the following topics: development of turbulence and combustion models; collaboration with industry and technology transfer; isotropic eddy viscosity models; algebraic Reynolds stress models; scalar turbulence models; second order closure models; multiple scale k-epsilon models; and PDF modeling of turbulent reacting flows

    A multiple-scale model for compressible turbulent flows

    Get PDF
    A multiple-scale model for compressible turbulent flows is proposed. It is assumed that turbulent eddy shocklets are formed primarily by the 'collisions' of large energetic eddies. The extra straining of the large eddy, due to their interactions with shocklets, enhances the energy cascade to smaller eddies. Model transport equations are developed for the turbulent kinetic energies and the energy transfer rates of the different scale. The turbulent eddy viscosity is determined by the total turbulent kinetic energy and the rate of energy transfer from the large scale to the small scale, which is different from the energy dissipation rate. The model coefficients in the modeled turbulent transport equations depend on the ratio of the turbulent kinetic energy of the large scale to that of the small scale, which renders the model more adaptive to the characteristics of individual flow. The model is tested against compressible free shear layers. The results agree satisfactorily with measurements

    Remarks on turbulent constitutive relations

    Get PDF
    The paper demonstrates that the concept of turbulent constitutive relations can be used to construct general models for various turbulent correlations. Some of the Generalized Cayley-Hamilton formulas for relating tensor products of higher extension to tensor products of lower extension are introduced. The combination of dimensional analysis and invariant theory can lead to 'turbulent constitutive relations' (or general turbulence models) for, in principle, any turbulent correlations. As examples, the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results are consistent with ones from Renormalization Group (RNG) theory and two-scale Direct-Interaction Approximation (DIA) method, but with a more general form

    Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling

    Get PDF
    The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data

    A critical comparison of second order closures with direct numerical simulation of homogeneous turbulence

    Get PDF
    Recently, several second order closure models have been proposed for closing the second moment equations, in which the velocity-pressure gradient (and scalar-pressure gradient) tensor and the dissipation rate tensor are two of the most important terms. In the literature, these correlation tensors are usually decomposed into a so called rapid term and a return-to-isotropy term. Models of these terms have been used in global flow calculations together with other modeled terms. However, their individual behavior in different flows have not been fully examined because they are un-measurable in the laboratory. Recently, the development of direct numerical simulation (DNS) of turbulence has given us the opportunity to do this kind of study. With the direct numerical simulation, we may use the solution to exactly calculate the values of these correlation terms and then directly compare them with the values from their modeled formulations (models). Here, we make direct comparisons of five representative rapid models and eight return-to-isotropy models using the DNS data of forty five homogeneous flows which were done by Rogers et al. (1986) and Lee et al. (1985). The purpose of these direct comparisons is to explore the performance of these models in different flows and identify the ones which give the best performance. The modeling procedure, model constraints, and the various evaluated models are described. The detailed results of the direct comparisons are discussed, and a few concluding remarks on turbulence models are given
    corecore